login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211379
Number of pairs of parallel diagonals in a regular n-gon.
3
0, 0, 0, 3, 7, 16, 27, 45, 66, 96, 130, 175, 225, 288, 357, 441, 532, 640, 756, 891, 1035, 1200, 1375, 1573, 1782, 2016, 2262, 2535, 2821, 3136, 3465, 3825, 4200, 4608, 5032, 5491, 5967, 6480, 7011, 7581, 8170, 8800, 9450, 10143, 10857, 11616, 12397, 13225
OFFSET
3,4
LINKS
FORMULA
a(n) = (1/2)*n*(binomial(n/2-1,2) + binomial(n/2-2,2)) = (1/8)*n*(n-4)^2 for n even;
a(n) = n*binomial((n-3)/2,2) = (1/8)*n*(n-3)*(n-5) for n odd.
G.f.: -x^6*(x^2-x-3) / ((x-1)^4*(x+1)^2). - Colin Barker, Feb 14 2013
EXAMPLE
a(6) = 3 since by numbering the vertices from 1 to 6 there are three pairs of parallel diagonals, i.e., {[1, 3], [4, 6]}, {[1, 5], [2, 4]}, {[2, 6], [3, 5]}.
a(7) = 7 since there are the seven pairs {[1, 3], [4, 7]}, {[1, 4], [5, 7]}, {[1, 5], [2, 4]}, {[1, 6], [2, 5]}, {[2, 6], [3, 5]}, {[2, 7], [3, 6]}, {[3, 7], [4, 6]}.
a(8) = 16 since there are the sixteen pairs {[1, 3], [4, 8]}, {[1, 3], [5, 7]}, {[1, 4], [5, 8]}, {[1, 5], [2, 4]}, {[1, 5], [6, 8]}, {[1, 6], [2, 5]}, {[1, 7], [2, 6]}, {[1, 7], [3, 5]}, {[2, 4], [6, 8]}, {[2, 6], [3, 5]}, {[2, 7], [3, 6]}, {[2, 8], [3, 7]}, {[2, 8], [4, 6]}, {[3, 7], [4, 6]}, {[3, 8], [4, 7]}, {[4, 8], [5, 7]}.
MAPLE
a:=n->piecewise(n mod 2 = 0, 1/8*n*(n-4)^2, n mod 2 = 1, 1/8*n*(n-3)*(n-5), 0);
MATHEMATICA
A211379[n_]:=n/8If[OddQ[n], (n-3)(n-5), (n-4)^2]; Array[A211379, 100, 3] (* or *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 0, 0, 3, 7, 16}, 100] (* Paolo Xausa, Nov 21 2023 *)
PROG
(Python)
def A211379(n): return n*(n*(n-8)+16-(n&1))>>3 # Chai Wah Wu, Nov 22 2023
CROSSREFS
Sequence in context: A036666 A218359 A117491 * A373104 A213180 A110585
KEYWORD
nonn,easy
AUTHOR
Martin Renner, Feb 07 2013
STATUS
approved