This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211377 T(n,k) = ((k + n)^2 - 4*k + 3 + (-1)^k - (k + n - 2)*(-1)^(k + n))/2; n, k > 0, read by antidiagonals. 8
 1, 3, 4, 2, 5, 6, 8, 9, 12, 13, 7, 10, 11, 14, 15, 17, 18, 21, 22, 25, 26, 16, 19, 20, 23, 24, 27, 28, 30, 31, 34, 35, 38, 39, 42, 43, 29, 32, 33, 36, 37, 40, 41, 44, 45, 47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 66, 68 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Permutation of the natural numbers. a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. Enumeration table T(n,k). The order of the list: T(1,1)=1; T(1,3), T(1,2), T(2,1), T(2,2), T(3,1); ... T(1,n), T(1,n-1), T(2,n-2), T(2,n-1), T(3,n-2), T(3,n-3)...T(n,1); ... Descent by snake along two adjacent antidiagonal - step to the west, step to the southwest, step to the east, step to the southwest and so on.  The length of each step is 1. Table contains: row 1 is alternation of elements A130883 and A033816, row 2 accommodates elements A100037 in odd places; column 1 is alternation of elements A000384 and A091823, column 2 is alternation of elements A071355 and A014106, column 3 accommodates elements A130861 in even places; main diagonal accommodates elements A188135 in odd places, diagonal 1, located above the main diagonal, is alternation of elements A033567 and A033566, diagonal 2, located above the main diagonal, is alternation of elements A139271 and A033585. LINKS Boris Putievskiy, Rows n = 1..140 of triangle, flattened Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012. Eric W. Weisstein, MathWorld: Pairing functions FORMULA As a table: T(n,k) = ((k + n)^2 - 4*k + 3 + (-1)^k - (k + n - 2)*(-1)^(k + n))/2. As a linear sequence: a(n) = ((t + 2)^2 - 4*j + 3 + (-1)^j - t*(-1)^t)/2, where j = (t*t + 3*t + 4)/2 - n and t = int((sqrt(8*n - 7) - 1)/ 2). EXAMPLE The start of the sequence as a table:    1,  3,  2,   8,   7,  17,  16,  30,  29,  47,  46, ...    4,  5,  9,  10,  18,  19,  31,  32,  48,  49,  69, ...    6, 12, 11,  21,  20,  34,  33,  51,  50,  72,  71, ...   13, 14, 22,  23,  35,  36,  52,  53,  73,  74,  98, ...   15, 25, 24,  38,  37,  55,  54,  76,  75, 101, 100, ...   26, 27, 39,  40,  56,  57,  77,  78, 102, 103, 131, ...   28, 42, 41,  59,  58,  80,  79, 105, 104, 134, 133, ...   43, 44, 60,  61,  81,  82, 106, 107, 135, 136, 168, ...   45, 63, 62,  84,  83, 109, 108, 138, 137, 171, 170, ...   64, 65, 85,  86, 110, 111, 139, 140, 172, 173, 209, ...   66, 88, 87, 113, 112, 142, 141, 175, 174, 212, 211, ...   ... The start of the sequence as triangle array read by rows:    1;    3,  4;    2,  5,  6;    8,  9, 12, 13;    7, 10, 11, 14, 15;   17, 18, 21, 22, 25, 26;   16, 19, 20, 23, 24, 27, 28;   30, 31, 34, 35, 38, 39, 42, 43;   29, 32, 33, 36, 37, 40, 41, 44, 45;   47, 48, 51, 52, 55, 56, 59, 60, 63, 64;   46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 66;   ... The start of the sequence as an array read by rows, the length of row r is 4*r-3. First 2*r-2 numbers are from row number 2*r-2 of the triangular array above. Last  2*r-1 numbers are from row number 2*r-1 of the triangular array above.    1;    3,  4,  2,  5,  6;    8,  9, 12, 13,  7, 10, 11, 14, 15;   17, 18, 21, 22, 25, 26, 16, 19, 20, 23, 24, 27, 28;   30, 31, 34, 35, 38, 39, 42, 43, 29, 32, 33, 36, 37, 40, 41, 44, 45;   47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 66;   ... Row number r contains permutation 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r: 2*r*r-5*r+5, 2*r*r-5*r+6,...2*r*r-r-4, 2*r*r-r-1, 2*r*r-r. MATHEMATICA T[n_, k_] := ((k+n)^2 - 4k + 3 + (-1)^k - (k+n-2)(-1)^(k+n))/2; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 29 2018 *) PROG (Python) t=int((math.sqrt(8*n-7) - 1)/ 2) i=n-t*(t+1)/2 j=(t*t+3*t+4)/2-n result=((t+2)**2-4*j+3+(-1)**j-t*(-1)**(t+2))/2 CROSSREFS Cf. A000384, A014106, A033566, A033567, A033585, A033816, A071355, A091823, A100037, A130861, A130883, A139271, A188135. Sequence in context: A201905 A138609 A322466 * A056699 A297969 A127296 Adjacent sequences:  A211374 A211375 A211376 * A211378 A211379 A211380 KEYWORD nonn,tabl AUTHOR Boris Putievskiy, Feb 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 22:48 EST 2019. Contains 329974 sequences. (Running on oeis4.)