login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203074
a(0)=1; for n > 0, a(n) = next prime after 2^(n-1).
6
1, 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, 536870923, 1073741827, 2147483659
OFFSET
0,2
COMMENTS
Equals {1} union A014210. Unlike A014210, every positive integer can be written in one or more ways as a sum of terms of this sequence. See A203075, A203076.
LINKS
M. F. Hasler & Bill McEachen, Table of n, a(n) for n = 0..1300 (missing lines n = 1159..1165 from Bill McEachen)
Wikipedia, "Complete" sequence. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - N. J. A. Sloane, May 20 2023]
FORMULA
A203074(n) = 2^(n-1) + A013597(n-1), for n > 0. - M. F. Hasler, Mar 15 2012
a(n) = A104080(n-1) for n > 2. - Georg Fischer, Oct 23 2018
EXAMPLE
a(5) = 17, since this is the next prime after 2^(5-1) = 2^4 = 16.
MATHEMATICA
nextprime[n_Integer] := (k=n+1; While[!PrimeQ[k], k++]; k); aprime[m_Integer] := (If[m==0, 1, nextprime[2^(m-1)]]); Table[aprime[l], {l, 0, 100}]
nxt[{n_, a_}]:={n+1, NextPrime[2^n]}; NestList[nxt, {0, 1}, 40][[All, 2]] (* Harvey P. Dale, Oct 10 2017 *)
PROG
(PARI) a(n)=if(n, nextprime(2^n/2+1), 1) \\ Charles R Greathouse IV
(PARI) A203074(n)=nextprime(2^(n-1)+1)-!n \\ M. F. Hasler, Mar 15 2012
(Magma) [1] cat [NextPrime(2^(n-1)): n in [1..40]]; // Vincenzo Librandi, Feb 23 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved