

A013597


a(n) = nextprime(2^n)  2^n.


16



1, 1, 1, 3, 1, 5, 3, 3, 1, 9, 7, 5, 3, 17, 27, 3, 1, 29, 3, 21, 7, 17, 15, 9, 43, 35, 15, 29, 3, 11, 3, 11, 15, 17, 25, 53, 31, 9, 7, 23, 15, 27, 15, 29, 7, 59, 15, 5, 21, 69, 55, 21, 21, 5, 159, 3, 81, 9, 69, 131, 33, 15, 135, 29, 13, 131, 9, 3, 33, 29, 25, 11, 15, 29
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

A013597 and A092131 use different definitions of "nextprime(2)", namely A151800 vs A007918: A013597 assumes nextprime(2) = 3 = A151800(2), whereas A092131 assumes nextprime(2) = 2 = A007918(n). [Edited by M. F. Hasler, Sep 09 2015]
If (for n>0) a(n)=1, then n is a power of 2 and 2^n+1 is a Fermat prime. n=1,2,4,8,16 are probably the only indices with this property.  Franz Vrabec, Sep 27 2005
Conjecture: there are no Sierpiński numbers in the sequence. See A076336.  Thomas Ordowski, Aug 13 2017


LINKS

T. D. Noe, Table of n, a(n) for n = 0..5000
V. Danilov, Table for large n


FORMULA

a(n) = A151800(2^n)  2^n = A013632(2^n).  R. J. Mathar, Nov 28 2016
Conjecture: a(n) < n^2/2 for n > 1.  Thomas Ordowski, Aug 13 2017


MAPLE

A013597 := proc(n)
nextprime(2^n)2^n ;
end proc:
seq(A013597(n), n=0..40) ;


MATHEMATICA

Table[NextPrime[#]  # &[2^n], {n, 0, 73}] (* Michael De Vlieger, Aug 15 2017 *)


PROG

(PARI) a(n) = nextprime(2^n+1)  2^n; \\ Michel Marcus, Nov 06 2015


CROSSREFS

Cf. A014210, A092131, A007918, A151800.
Sequence in context: A249100 A152203 A161946 * A092131 A092099 A096567
Adjacent sequences: A013594 A013595 A013596 * A013598 A013599 A013600


KEYWORD

nonn


AUTHOR

James Kilfiger (mapdn(AT)csv.warwick.ac.uk)


STATUS

approved



