login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014556 Euler's "Lucky" numbers: n such that m^2-m+n is prime for m=0..n-1. 11
2, 3, 5, 11, 17, 41 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Same as n such that 4n-1 is a Heegner number 1,2,3,7,11,19,43,67,163 (see A003173 and Conway and Guy's book).

REFERENCES

J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 225.

J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 41, p. 16, Ellipses, Paris 2008.

F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, pp. 88 and 144, 1983.

LINKS

Table of n, a(n) for n=1..6.

Eric Weisstein's World of Mathematics, Lucky Number of Euler

Eric Weisstein's World of Mathematics, Prime-Generating Polynomial

FORMULA

a(n)=(A003173(n+3)+1)/4. [From M. F. Hasler, Nov 03 2008]

MATHEMATICA

A003173 = Union[Select[-NumberFieldDiscriminant[Sqrt[-#]] & /@ Range[200], NumberFieldClassNumber[Sqrt[-#]] == 1 &] /. {4 -> 1, 8 -> 2}]; a[n_] := (A003173[[n + 4]] + 1)/4; Table[a[n], {n, 0, 5}] (* Jean-Fran├žois Alcover, Jul 16 2012, after M. F. Hasler *)

PROG

(PARI) is(n)=n>1 && qfbclassno(1-4*n)==1 \\ Charles R Greathouse IV, Jan 29 2013

CROSSREFS

Cf. A000926, A003173, A092749, A117530, A117531.

Sequence in context: A079370 A014210 A203074 * A062737 A085613 A082605

Adjacent sequences:  A014553 A014554 A014555 * A014557 A014558 A014559

KEYWORD

nonn,fini,full,nice

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 09:53 EST 2014. Contains 249840 sequences.