This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200126 Decimal expansion of least x satisfying 2*x^2 - 3*cos(x) = 4*sin(x), negated. 3
 5, 3, 0, 6, 3, 3, 0, 4, 7, 4, 9, 6, 8, 4, 8, 8, 8, 0, 1, 6, 6, 8, 0, 4, 1, 7, 5, 6, 7, 1, 0, 6, 4, 1, 0, 0, 2, 8, 1, 6, 1, 9, 5, 6, 3, 6, 8, 5, 3, 5, 6, 4, 4, 6, 1, 4, 8, 4, 3, 4, 2, 1, 2, 0, 9, 6, 5, 7, 3, 0, 5, 4, 4, 1, 6, 7, 8, 8, 8, 3, 6, 3, 9, 5, 4, 1, 6, 4, 1, 4, 1, 5, 8, 8, 6, 7, 2, 2, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A199949 for a guide to related sequences.  The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 EXAMPLE least x: -0.530633047496848880166804175671064100... greatest x: 1.4652353861426318569459268305726949... MATHEMATICA a = 2; b = -3; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.54, -.53}, WorkingPrecision -> 110] RealDigits[r]  (* A200126 *) r = x /. FindRoot[f[x] == g[x], {x, 1.46, 1.47}, WorkingPrecision -> 110] RealDigits[r]  (* A200127 *) PROG (PARI) a=2; b=-3; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 01 2018 CROSSREFS Cf. A199949. Sequence in context: A193547 A144481 A232225 * A065469 A249522 A243381 Adjacent sequences:  A200123 A200124 A200125 * A200127 A200128 A200129 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 14 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 12:39 EDT 2019. Contains 321421 sequences. (Running on oeis4.)