This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200129 Decimal expansion of greatest x satisfying 2*x^2-4*cos(x)=sin(x). 3
 1, 1, 3, 7, 4, 0, 1, 1, 9, 9, 5, 2, 6, 8, 6, 8, 5, 2, 6, 5, 0, 2, 7, 8, 8, 0, 3, 0, 8, 4, 2, 5, 4, 4, 8, 8, 0, 5, 3, 0, 2, 1, 1, 9, 6, 5, 1, 5, 2, 5, 1, 3, 6, 5, 2, 7, 2, 9, 1, 7, 5, 8, 7, 9, 5, 2, 0, 9, 9, 5, 9, 6, 1, 9, 0, 2, 0, 3, 1, 5, 1, 9, 0, 1, 7, 9, 8, 3, 6, 9, 7, 0, 1, 2, 9, 6, 8, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See A199949 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE least x: -0.91125136577248241254947318280293... greatest x: 1.13740119952686852650278803084... MATHEMATICA a = 2; b = -4; c = 1; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.92, -.91}, WorkingPrecision -> 110] RealDigits[r]  (* A200128 *) r = x /. FindRoot[f[x] == g[x], {x, 1.13, 1.14}, WorkingPrecision -> 110] RealDigits[r]  (* A200129 *) CROSSREFS Cf. A199949. Sequence in context: A213244 A050393 A110778 * A181912 A108297 A135928 Adjacent sequences:  A200126 A200127 A200128 * A200130 A200131 A200132 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 14 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.