login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200129 Decimal expansion of greatest x satisfying 2*x^2-4*cos(x)=sin(x). 3
1, 1, 3, 7, 4, 0, 1, 1, 9, 9, 5, 2, 6, 8, 6, 8, 5, 2, 6, 5, 0, 2, 7, 8, 8, 0, 3, 0, 8, 4, 2, 5, 4, 4, 8, 8, 0, 5, 3, 0, 2, 1, 1, 9, 6, 5, 1, 5, 2, 5, 1, 3, 6, 5, 2, 7, 2, 9, 1, 7, 5, 8, 7, 9, 5, 2, 0, 9, 9, 5, 9, 6, 1, 9, 0, 2, 0, 3, 1, 5, 1, 9, 0, 1, 7, 9, 8, 3, 6, 9, 7, 0, 1, 2, 9, 6, 8, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least x: -0.91125136577248241254947318280293...

greatest x: 1.13740119952686852650278803084...

MATHEMATICA

a = 2; b = -4; c = 1;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.92, -.91}, WorkingPrecision -> 110]

RealDigits[r]  (* A200128 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.13, 1.14}, WorkingPrecision -> 110]

RealDigits[r]  (* A200129 *)

CROSSREFS

Cf. A199949.

Sequence in context: A213244 A050393 A110778 * A181912 A108297 A135928

Adjacent sequences:  A200126 A200127 A200128 * A200130 A200131 A200132

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 21:15 EST 2016. Contains 278895 sequences.