login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200103 Decimal expansion of least x satisfying x^2 - 4*cos(x) = 3*sin(x), negated. 3
7, 9, 9, 2, 0, 0, 8, 1, 6, 8, 9, 5, 0, 9, 7, 0, 0, 5, 9, 4, 4, 4, 6, 0, 0, 6, 9, 2, 3, 2, 1, 1, 0, 1, 0, 4, 1, 2, 5, 1, 2, 1, 2, 6, 7, 1, 1, 1, 6, 1, 4, 3, 6, 3, 7, 8, 0, 2, 0, 8, 4, 8, 6, 9, 4, 0, 5, 8, 0, 2, 7, 0, 8, 4, 8, 0, 7, 3, 4, 1, 6, 4, 1, 1, 8, 9, 1, 8, 7, 8, 2, 4, 3, 0, 4, 5, 4, 2, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x:  -0.79920081689509700594446006923211010...

greatest x: 1.643556567520171656906524761634888...

MATHEMATICA

a = 1; b = -4; c = 3;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]

RealDigits[r]  (* A200103 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.64, 1.65}, WorkingPrecision -> 110]

RealDigits[r]  (* A200104 *)

PROG

(PARI) a=1; b=-4; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

CROSSREFS

Cf. A199949.

Sequence in context: A019862 A300444 A021930 * A198753 A244625 A175642

Adjacent sequences:  A200100 A200101 A200102 * A200104 A200105 A200106

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 23:54 EDT 2019. Contains 328038 sequences. (Running on oeis4.)