login
A200101
Decimal expansion of least x satisfying x^2 - 4*cos(x) = 2*sin(x), negated.
3
9, 1, 7, 7, 0, 1, 3, 1, 5, 8, 3, 1, 6, 0, 0, 4, 7, 5, 1, 7, 0, 5, 2, 4, 3, 9, 0, 9, 5, 3, 9, 2, 1, 4, 8, 7, 7, 1, 8, 1, 9, 6, 1, 1, 6, 8, 5, 9, 0, 0, 5, 7, 1, 1, 5, 1, 0, 0, 4, 8, 9, 0, 0, 2, 2, 4, 8, 9, 4, 4, 8, 7, 9, 0, 0, 7, 1, 1, 5, 4, 2, 2, 3, 0, 2, 3, 3, 9, 9, 7, 4, 4, 0, 5, 8, 6, 8, 6, 8
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.91770131583160047517052439095392148771...
greatest x: 1.50407436560390845625770968131259727...
MATHEMATICA
a = 1; b = -4; c = 2;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.92, -.91}, WorkingPrecision -> 110]
RealDigits[r] (* A200101 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
RealDigits[r] (* A200102 *)
PROG
(PARI) a=1; b=-4; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018
CROSSREFS
Cf. A199949.
Sequence in context: A021113 A019948 A154207 * A371095 A084002 A376968
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 13 2011
STATUS
approved