login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199956 Decimal expansion of greatest x satisfying x^2 + 2*cos(x) = 3*sin(x). 3
1, 8, 5, 4, 7, 7, 8, 4, 1, 0, 3, 5, 6, 7, 5, 1, 7, 7, 4, 1, 4, 1, 9, 3, 9, 5, 8, 1, 7, 3, 6, 9, 9, 8, 7, 6, 1, 2, 0, 4, 0, 2, 7, 3, 4, 6, 6, 2, 5, 0, 8, 3, 5, 1, 5, 6, 1, 8, 5, 4, 3, 4, 9, 8, 5, 1, 4, 3, 3, 5, 0, 3, 4, 7, 8, 0, 5, 7, 7, 0, 2, 7, 3, 9, 6, 7, 0, 0, 4, 1, 6, 7, 4, 8, 0, 9, 8, 5, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least x:  0.74080336819413223759642692454702162091742...

greatest x: 1.854778410356751774141939581736998761204...

MATHEMATICA

a = 1; b = 2; c = 3;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .74, .75}, WorkingPrecision -> 110]

RealDigits[r]  (* A199955 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110]

RealDigits[r]  (* A199956 *)

PROG

(PARI) a=1; b=2; c=3; solve(x=.5, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

CROSSREFS

Cf. A199949.

Sequence in context: A275984 A198824 A021121 * A254270 A000052 A072991

Adjacent sequences:  A199953 A199954 A199955 * A199957 A199958 A199959

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 25 16:50 EDT 2019. Contains 326324 sequences. (Running on oeis4.)