login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199954 Decimal expansion of greatest x satisfying x^2+cos(x)=4*sin(x). 3
2, 0, 1, 1, 1, 3, 7, 3, 4, 2, 2, 2, 9, 3, 3, 0, 8, 4, 6, 0, 0, 2, 5, 0, 6, 5, 4, 0, 8, 7, 9, 6, 3, 9, 3, 8, 8, 6, 3, 0, 0, 8, 4, 0, 8, 3, 8, 7, 3, 6, 0, 3, 0, 2, 4, 5, 8, 3, 9, 1, 4, 5, 9, 0, 1, 5, 3, 4, 4, 8, 6, 5, 5, 4, 5, 4, 0, 4, 2, 8, 5, 6, 1, 9, 7, 0, 4, 3, 0, 7, 4, 0, 8, 0, 4, 5, 5, 7, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least x:  0.26157393647481130212296420178312116039782...

greatest x: 2.011137342229330846002506540879639388630...

MATHEMATICA

a = 1; b = 1; c = 4;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .26, .27}, WorkingPrecision -> 110]

RealDigits[r]  (* A199953 *)

r = x /. FindRoot[f[x] == g[x], {x, 2.0, 2.1}, WorkingPrecision -> 110]

RealDigits[r]  (* A199954 *)

PROG

(PARI) a=1; b=1; c=4; solve(x=2, 2.1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

CROSSREFS

Cf. A199949.

Sequence in context: A263863 A134655 A262124 * A219987 A077614 A280379

Adjacent sequences:  A199951 A199952 A199953 * A199955 A199956 A199957

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 01:58 EDT 2019. Contains 327207 sequences. (Running on oeis4.)