login
A198350
Decimal expansion of greatest x having 4*x^2+x=cos(x).
3
3, 7, 3, 3, 9, 5, 9, 1, 6, 0, 1, 9, 3, 9, 6, 9, 6, 8, 8, 9, 6, 8, 3, 2, 1, 5, 1, 9, 8, 1, 8, 4, 7, 6, 3, 1, 5, 9, 9, 6, 4, 4, 5, 8, 2, 7, 2, 7, 2, 9, 8, 8, 8, 9, 5, 4, 7, 1, 5, 6, 2, 9, 0, 9, 6, 4, 5, 2, 5, 2, 1, 1, 0, 8, 3, 2, 2, 5, 5, 5, 8, 6, 0, 2, 5, 0, 1, 6, 0, 5, 3, 7, 6, 8, 6, 3, 6, 4, 2
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -0.596628694828122209772071553484966...
greatest x: 0.3733959160193969688968321519818...
MATHEMATICA
a = 4; b = 1; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -.6, -.5}, WorkingPrecision -> 110]
RealDigits[r1] (* A198349 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .37, .38}, WorkingPrecision -> 110]
RealDigits[r2] (* A198350 *)
CROSSREFS
Cf. A197737.
Sequence in context: A145511 A242461 A065443 * A117190 A375553 A113584
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved