login
A198352
Decimal expansion of greatest x having 4*x^2+x=2*cos(x).
3
5, 4, 1, 4, 1, 8, 9, 0, 3, 1, 7, 2, 9, 0, 6, 7, 1, 1, 2, 9, 6, 9, 2, 1, 9, 6, 7, 2, 0, 6, 2, 4, 0, 6, 8, 8, 1, 3, 3, 0, 1, 8, 0, 6, 2, 4, 3, 1, 5, 2, 0, 5, 6, 5, 0, 4, 8, 8, 9, 6, 6, 8, 2, 9, 7, 8, 2, 6, 1, 4, 2, 2, 3, 2, 8, 8, 0, 0, 0, 9, 7, 6, 7, 7, 5, 3, 2, 3, 7, 8, 4, 3, 1, 9, 8, 9, 3, 9, 1
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -0.74421989852706246873275828006370...
greatest x: 0.541418903172906711296921967206240...
MATHEMATICA
a = 4; b = 1; c = 2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]
RealDigits[r1] (* A198351 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
RealDigits[r2] (* A198352 *)
CROSSREFS
Cf. A197737.
Sequence in context: A166044 A190287 A087707 * A113011 A028875 A130815
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved