login
A198351
Decimal expansion of least x having 4*x^2+x=2*cos(x).
3
7, 4, 4, 2, 1, 9, 8, 9, 8, 5, 2, 7, 0, 6, 2, 4, 6, 8, 7, 3, 2, 7, 5, 8, 2, 8, 0, 0, 6, 3, 7, 0, 2, 8, 8, 5, 9, 7, 2, 5, 6, 8, 0, 7, 4, 5, 1, 0, 0, 1, 7, 4, 3, 0, 9, 4, 0, 6, 3, 6, 4, 2, 7, 1, 1, 7, 1, 2, 5, 8, 7, 0, 8, 7, 3, 8, 6, 9, 7, 0, 1, 5, 4, 8, 7, 0, 1, 4, 2, 1, 8, 2, 7, 1, 8, 3, 6, 2, 1
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -0.74421989852706246873275828006370...
greatest x: 0.541418903172906711296921967206240...
MATHEMATICA
a = 4; b = 1; c = 2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]
RealDigits[r1] (* A198351 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
RealDigits[r2] (* A198352 *)
CROSSREFS
Cf. A197737.
Sequence in context: A100041 A193968 A153840 * A354249 A245074 A194474
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved