login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195242
Expansion of Sum_{n>=0} n^n*x^n/(1 - n*x)^n.
9
1, 1, 5, 44, 548, 8808, 173352, 4036288, 108507968, 3307368320, 112703108480, 4245680193024, 175200825481728, 7859411394860032, 380810598813553664, 19819617775693512704, 1102737068471914938368, 65316500202537025634304, 4103422475123595857854464
OFFSET
0,3
COMMENTS
Compare g.f. to the identity (cf. A001710):
Sum_{n>=0} n^n*x^n/(1 + n*x)^n = 1 + (1/2)*Sum_{n>=1} (n+1)!*x^n.
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(n-1,k)*(k+1)^n.
a(n) = (n+1)!/2 + 2*Sum_{k=0..[n/2]} C(n-1,n-2*k)*(n-2*k+1)^n for n>0 with a(0)=1.
a(n) ~ n^n * r^(n+3/2) / (exp(n) * (1-r)^n), where r = 1/(1+LambertW(exp(-1))) = 0.78218829428019990122... . - Vaclav Kotesovec, May 14 2014
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(-k,-n)*k^n. Cf. A053506. - Peter Luschny, Apr 11 2016
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 44*x^3 + 548*x^4 + 8808*x^5 + 173352*x^6 +...
where
A(x) = 1 + x/(1-x) + 2^2*x^2/(1-2*x)^2 + 3^3*x^3/(1-3*x)^3 + 4^4*x^4/(1-4*x)^4 +...
MATHEMATICA
a[n_] := Sum[Binomial[n - 1, k] (k + 1)^n, {k, 0, n}];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jun 26 2019 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m^m*x^m/(1-m*x+x*O(x^n))^m), n)}
(PARI) {a(n)=sum(k=0, n, binomial(n-1, k)*(k+1)^n)}
(PARI) {a(n)=(n+1)!/2 + 2*sum(k=0, n\2, binomial(n-1, n-2*k)*(n-2*k+1)^n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 13 2011
STATUS
approved