login
A195241
Expansion of (1-x+19*x^3-3*x^4)/(1-x)^3.
4
1, 2, 3, 23, 59, 111, 179, 263, 363, 479, 611, 759, 923, 1103, 1299, 1511, 1739, 1983, 2243, 2519, 2811, 3119, 3443, 3783, 4139, 4511, 4899, 5303, 5723, 6159, 6611, 7079, 7563, 8063, 8579, 9111, 9659, 10223, 10803, 11399, 12011, 12639, 13283, 13943
OFFSET
0,2
COMMENTS
Sequence found by reading the line 1, 2, 3, 23,.. in the square spiral whose vertices are the triangular numbers (A000217) - see Pol's comments in other sequences visible in this numerical spiral.
This is a subsequence of A110326 (without signs) and A047838 (apart from the second term, 2).
FORMULA
G.f.: (1-x+19*x^3-3*x^4)/(1-x)^3.
a(n) = 8*n^2-20*n+11 for n>1; a(0)=1, a(1)=2.
MATHEMATICA
CoefficientList[Series[(1 - x + 19 x^3 - 3 x^4)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 2, 3, 23, 59}, 50] (* Harvey P. Dale, Dec 04 2022 *)
PROG
(PARI) Vec((1-x+19*x^3-3*x^4)/(1-x)^3+O(x^44))
(Magma) m:=44; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+19*x^3-3*x^4)/(1-x)^3));
(Maxima) makelist(coeff(taylor((1-x+19*x^3-3*x^4)/(1-x)^3, x, 0, n), x, n), n, 0, 43);
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Sep 13 2011 - based on remarks and sequences by Omar E. Pol.
STATUS
approved