OFFSET
0,2
COMMENTS
Generally, for p>=1, a(n) = Sum_{k=0..n} C(n,k) * (p*k+1)^(p*n+1) is asymptotic to n^(p*n+1) * p^(p*n+1) * r^(p*n+3/2+1/p) / (sqrt(p+r-p*r) * exp(p*n) * (1-r)^(n+1/p)), where r = p/(p+LambertW(p*exp(-p))).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..190
FORMULA
a(n) ~ n^(2*n+1) * 2^(2*n+1) * r^(2*n+2) / (sqrt(2-r) * exp(2*n) * (1-r)^(n+1/2)), where r = 2/(2+LambertW(2*exp(-2))) = 0.901829091937052...
MATHEMATICA
Table[Sum[Binomial[n, k]*(2*k+1)^(2*n+1), {k, 0, n}], {n, 0, 20}]
PROG
(PARI) for(n=0, 30, print1(sum(k=0, n, binomial(n, k)*(2*k+1)^(2*n+1)), ", ")) \\ G. C. Greubel, Nov 16 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 14 2014
STATUS
approved