login
A193735
Mirror of the triangle A193734.
3
1, 2, 1, 8, 6, 1, 32, 32, 10, 1, 128, 160, 72, 14, 1, 512, 768, 448, 128, 18, 1, 2048, 3584, 2560, 960, 200, 22, 1, 8192, 16384, 13824, 6400, 1760, 288, 26, 1, 32768, 73728, 71680, 39424, 13440, 2912, 392, 30, 1, 131072, 327680, 360448, 229376, 93184, 25088, 4480, 512, 34, 1
OFFSET
0,2
COMMENTS
A193735 is obtained by reversing the rows of the triangle A193734.
Triangle T(n,k), read by rows, given by (2,2,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011
FORMULA
T(n,k) = A193734(n,n-k).
T(n,k) = T(n-1,k-1) + 4*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-2*x)/(1-4*x-x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 19 2023: (Start)
T(n, 0) = A081294(n).
Sum_{k=0..n} T(n, k) = A005053(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A133494(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A001077(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A001075(n). (End)
EXAMPLE
First six rows:
1;
2, 1;
8, 6, 1;
32, 32, 10, 1;
128, 160, 72, 14, 1;
512, 768, 448, 128, 18, 1;
MATHEMATICA
(* First program *)
z = 8; a = 2; b = 1; c = 1; d = 2;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193734 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193735 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 4*T[n-1, k] + T[n -1, k-1]]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2023 *)
PROG
(Magma)
function T(n, k) // T = A193735
if k lt 0 or k gt n then return 0;
elif n lt 2 then return n-k+1;
else return 4*T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2023
(SageMath)
def T(n, k): # T = A193735
if (k<0 or k>n): return 0
elif (n<2): return n-k+1
else: return 4*T(n-1, k) + T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 19 2023
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 04 2011
STATUS
approved