The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193734 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(2x+1)^n and q(n,x)=(x+2)^n. 4
 1, 1, 2, 1, 6, 8, 1, 10, 32, 32, 1, 14, 72, 160, 128, 1, 18, 128, 448, 768, 512, 1, 22, 200, 960, 2560, 3584, 2048, 1, 26, 288, 1760, 6400, 13824, 16384, 8192, 1, 30, 392, 2912, 13440, 39424, 71680, 73728, 32768, 1, 34, 512, 4480, 25088, 93184, 229376 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. Triangle T(n,k), read by rows, given by (1,0,0,0,0,0,0,0,...) DELTA (2,2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011 LINKS FORMULA T(n,k) = 4*T(n-1,k-1) + T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011 G.f.: (-1+2*x*y)/(-1+4*x*y+x). - R. J. Mathar, Aug 11 2015 EXAMPLE First six rows:   1;   1,  2;   1,  6,   8;   1, 10,  32,  32;   1, 14,  72, 160, 128;   1, 18, 128, 448, 768, 511; MATHEMATICA z = 8; a = 2; b = 1; c = 1; d = 2; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193734 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]]      (* A193735 *) CROSSREFS Cf. A084938, A193722, A193735. Sequence in context: A192232 A243320 A319897 * A318390 A319511 A110608 Adjacent sequences:  A193731 A193732 A193733 * A193735 A193736 A193737 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Aug 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 20:34 EST 2020. Contains 332084 sequences. (Running on oeis4.)