This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026581 Expansion of (1 + 2*x) / (1 - x - 4*x^2). 9
 1, 3, 7, 19, 47, 123, 311, 803, 2047, 5259, 13447, 34483, 88271, 226203, 579287, 1484099, 3801247, 9737643, 24942631, 63893203, 163663727, 419236539, 1073891447, 2750837603, 7046403391, 18049753803, 46235367367, 118434382579, 303375852047, 777113382363 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS T(n,0) + T(n,1) + ... + T(n,2n), T given by A026568. Row sums of Riordan array ((1+2x)/(1+x),x(1+2x)/(1+x)). Binomial transform is A055099. - Paul Barry, Jun 26 2008 Equals row sums of triangle A153341. - Gary W. Adamson, Dec 24 2008 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,4). FORMULA G.f.: (1 + 2*x) / (1 - x - 4*x^2). a(n) = a(n-1) + 4*a(n-2), n>1. a(n) = 2*A006131(n-1) + A006131(n), n>0. a(n) = (2^(-1-n)*((1-sqrt(17))^n*(-5+sqrt(17)) + (1+sqrt(17))^n*(5+sqrt(17))))/sqrt(17). - Colin Barker, Dec 22 2016 MATHEMATICA CoefficientList[Series[(1+2x)/(1-x-4x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{1, 4}, {1, 3}, 30] (* Harvey P. Dale, Aug 04 2015 *) PROG (PARI) Vec((1+2*x) / (1-x-4*x^2) + O(x^40)) \\ Colin Barker, Dec 22 2016 CROSSREFS Cf. A006131, A026568, A026583, A026597, A026599, A052923, A055099. Cf. A153341. - Gary W. Adamson, Dec 24 2008 Sequence in context: A029855 A209397 A110014 * A151535 A181360 A001372 Adjacent sequences:  A026578 A026579 A026580 * A026582 A026583 A026584 KEYWORD nonn,easy AUTHOR EXTENSIONS Edited by Ralf Stephan, Jul 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 22:07 EST 2018. Contains 318087 sequences. (Running on oeis4.)