login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193476
The denominators of the Bernoulli secant numbers at odd indices.
1
2, 56, 992, 16256, 261632, 4192256, 67100672, 1073709056, 17179738112, 274877382656, 628292059136, 70368735789056, 1125899873288192, 18014398375264256, 288230375614840832, 4611686016279904256, 73786976286248271872, 1180591620683051565056
OFFSET
0,1
COMMENTS
Denominator of the coefficient [x^(2n)] of sec(x)*(2*n+1)!/(4*16^n-2*4^n), that is, a(n) is the denominator of A000364(n)*(2*n+1)/(4*16^n-2*4^n). [Edited by Altug Alkan, Apr 22 2018]
Numerators are A160143. [Corrected by Peter Luschny, Mar 18 2021]
A193475(n) = 4*16^n-2*4^n is similar, but differs at n = 10, 31, 52, 73, 77, 94, ...
MAPLE
gf := (f, n) -> coeff(series(f(x), x, n+4), x, n):
A193476 := n -> denom(gf(sec, 2*n)*(2*n+1)!/(4*16^n - 2*4^n)):
seq(A193476(n), n = 0..17); # Altug Alkan, Apr 23 2018
MATHEMATICA
a[n_] := Sum[Sum[Binomial[k, m] (-1)^(n+k)/(2^(m-1)) Sum[Binomial[m, j]*(2j - m)^(2n), {j, 0, m/2}]*(-1)^(k-m), {m, 0, k}], {k, 1, 2n}] (2n+1)/ (4*16^n - 2*4^n) // Denominator; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 26 2019, after Vladimir Kruchinin in A000364 *)
PROG
(PARI) a(n) = denominator(subst(bernpol(2*n+1), 'x, 1/4)*2^(2*n+1)/(2^(2*n+1)-1)); \\ Altug Alkan, Apr 22 2018 after Charles R Greathouse IV at A000364
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Aug 17 2011
STATUS
approved