OFFSET
1,4
COMMENTS
See A196776 for a row reversed form of this triangle. - Peter Bala, Oct 06 2011
FORMULA
P(n, 0) = A000142(n).
P(n, 1) = A006154(n).
P(n, 2) = A191277(n).
P(n, i) = A000111(n+1), where i is the imaginary unit.
P(n, i)*2^n = A000828(n+1).
P(n, 1/2)*2^n = A000557(n).
P(n, 1/3)*3^n = A107403(n).
P(n, i/2)*2^n = A007289(n).
G(m, x) = 1/(1 - m*sinh(x)) is the generating function of m^n*P(n, 1/m).
GI(m, x) = 1/(1 - m*sin(x)) is the generating function of m^n*P(n, i/m).
[x^2] P(n+1, x) = A005990(n).
EXAMPLE
The sequence of polynomials P(n, x) begins:
[0] 1;
[1] 1;
[2] 2;
[3] 6 + x^2;
[4] 24 + 8*x^2;
[5] 120 + 60*x^2 + x^4;
[6] 720 + 480*x^2 + 32*x^4;
[7] 5040 + 4200*x^2 + 546*x^4 + x^6.
MAPLE
MATHEMATICA
p[n_, x_] := Sum[(-1)^j*2^(-k)*Binomial[k, j]*(k-2*j)^n*x^(n-k), {k, 0, n}, {j, 0, k}]; t[n_, k_] := Coefficient[p[n, x], x, k]; t[0, 0] = 1; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2014 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 01 2011
STATUS
approved