login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193474
Table read by rows: The coefficients of the polynomials P(n, x) = Sum{k=0..n} Sum{j=0..k} (-1)^j * 2^(-k) * binomial(k, j) * (k-2*j)^n * x^(n-k).
2
1, 1, 0, 2, 0, 0, 6, 0, 1, 0, 24, 0, 8, 0, 0, 120, 0, 60, 0, 1, 0, 720, 0, 480, 0, 32, 0, 0, 5040, 0, 4200, 0, 546, 0, 1, 0, 40320, 0, 40320, 0, 8064, 0, 128, 0, 0, 362880, 0, 423360, 0, 115920, 0, 4920, 0, 1, 0, 3628800, 0, 4838400, 0, 1693440, 0, 130560, 0, 512, 0, 0
OFFSET
1,4
COMMENTS
See A196776 for a row reversed form of this triangle. - Peter Bala, Oct 06 2011
FORMULA
P(n, 0) = A000142(n).
P(n, 1) = A006154(n).
P(n, 2) = A191277(n).
P(n, i) = A000111(n+1), where i is the imaginary unit.
P(n, i)*2^n = A000828(n+1).
P(n, 1/2)*2^n = A000557(n).
P(n, 1/3)*3^n = A107403(n).
P(n, i/2)*2^n = A007289(n).
G(m, x) = 1/(1 - m*sinh(x)) is the generating function of m^n*P(n, 1/m).
GI(m, x) = 1/(1 - m*sin(x)) is the generating function of m^n*P(n, i/m).
[x^2] P(n+1, x) = A005990(n).
EXAMPLE
The sequence of polynomials P(n, x) begins:
[0] 1;
[1] 1;
[2] 2;
[3] 6 + x^2;
[4] 24 + 8*x^2;
[5] 120 + 60*x^2 + x^4;
[6] 720 + 480*x^2 + 32*x^4;
[7] 5040 + 4200*x^2 + 546*x^4 + x^6.
MAPLE
A193474_polynom := proc(n, x) local k, j;
add(add((-1)^j*2^(-k)*binomial(k, j)*(k-2*j)^n*x^(n-k), j=0..k), k=0..n) end: seq(seq(coeff(A193474_polynom(n, x), x, i), i=0..n), n=0..10);
MATHEMATICA
p[n_, x_] := Sum[(-1)^j*2^(-k)*Binomial[k, j]*(k-2*j)^n*x^(n-k), {k, 0, n}, {j, 0, k}]; t[n_, k_] := Coefficient[p[n, x], x, k]; t[0, 0] = 1; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2014 *)
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 01 2011
STATUS
approved