login
A193471
Square array A(n,k) (n>=1, k>=0) read by antidiagonals: A(n,0) = 0 and A(n,k) is the least integer > A(n,k-1) that can be expressed as a sum of the first prime numbers divided by n.
1
0, 0, 2, 0, 1, 5, 0, 43, 5, 10, 0, 7, 127, 14, 17, 0, 1, 25, 167, 29, 28, 0, 1145, 2, 40, 213, 50, 41, 0, 4, 3758, 20, 82, 321, 80, 58, 0, 20, 11, 3932, 32, 110, 387, 119, 77, 0, 71, 41, 34, 4300, 88, 142, 457, 164, 100, 0, 1, 107, 55, 113, 4490, 212, 178, 531, 220, 129, 0, 7, 10
OFFSET
1,3
LINKS
EXAMPLE
n\k 0 1 2 3 4 5 6 7
-----------------------------------------
1 | 0 2 5 10 17 28 41 58 A007504
2 | 0 1 5 14 29 50 80 119
3 | 0 43 127 167 213 321 387 457 A112270
4 | 0 7 25 40 82 110 142 178
5 | 0 1 2 20 32 88 212 296 A112271
6 | 0 1145 3758 3932 4300 4490 4684 5084
7 | 0 4 11 34 113 284 441 634 A112272
8 | 0 20 41 55 71 89 158 185
MAPLE
A193471_rect := proc(n, k) local j, i, L; L := NULL; j := 0;
while nops([L]) < k do add(ithprime(i)/n, i=1..j);
if type(%, integer) then L := L, % fi; j := j+1 od; L end:
seq(print(A193471_rect(n, 8)), n = 1..8);
MATHEMATICA
max = 12; rect[n_, k_] := Module[{j, i, L, s}, L = {}; j = 0; While[Length[L]<k, s = Sum[Prime[i]/n, {i, 1, j}]; If[IntegerQ[s], AppendTo[L, s]]; j = j+1]; L]; a[_, 0] = 0; a[n_, k_] := rect[n, max][[k+1]]; Table[a[n-k, k], {n, 1, max} , {k, 0, n-1}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
CROSSREFS
Cf. A193470.
Sequence in context: A321619 A285212 A262948 * A351645 A182931 A377335
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 29 2011
STATUS
approved