login
A191808
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(n^6).
3
1, 1, 2, 67, 2941, 327868, 75504909, 23827165139, 14250056009694, 12425294009958329, 14645969719539739213, 26039632087532302145593, 61861506372519998418244631, 188885323588779065057458593218
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 67*x^3 + 2941*x^4 + 327868*x^5 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^64 + x^3*A(x)^729 + x^4*A(x)^4096 + x^5*A(x)^15625 + x^6*A(x)^46656 +...+ x^n*A(x)^(n^6) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*(A+x*O(x^n))^(m^6))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2011
STATUS
approved