login
A191807
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(n^5).
3
1, 1, 2, 35, 839, 39817, 3186197, 350165095, 60551444146, 14198688038403, 4371837596384520, 1810022601411867232, 944544112975598084882, 612407529661033348265928, 494617108638856876638563800
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 35*x^3 + 839*x^4 + 39817*x^5 + 3186197*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^32 + x^3*A(x)^243 + x^4*A(x)^1024 + x^5*A(x)^3125 + x^6*A(x)^7776 +...+ x^n*A(x)^(n^5) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*(A+x*O(x^n))^(m^5))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2011
STATUS
approved