login
A191811
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^binomial(n+4,5).
3
1, 1, 2, 9, 58, 501, 5452, 74211, 1257414, 26480393, 689598502, 21957924255, 844532153323, 38719749230469, 2091808065954023, 131835936103587004, 9607988537163939224, 803620426590302536069, 76622443259122023510169
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 58*x^4 + 501*x^5 + 5452*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^6 + x^3*A(x)^21 + x^4*A(x)^56 + x^5*A(x)^126 + x^6*A(x)^252 + x^7*A(x)^462 +...+ x^n*A(x)^(n*(n+1)*(n+2)*(n+3)*(n+4)/5!) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*(A+x*O(x^n))^binomial(m+4, 5))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2011
STATUS
approved