login
A191805
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(n^3).
3
1, 1, 2, 11, 83, 809, 9503, 130107, 2056768, 37137351, 761543233, 17637050418, 458225405825, 13265643258608, 424971569670808, 14963974979730138, 575619170223815326, 24056794697473352763, 1087014831018615150024
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 83*x^4 + 809*x^5 + 9503*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^8 + x^3*A(x)^27 + x^4*A(x)^64 + x^5*A(x)^125 + x^6*A(x)^216 +...+ x^n*A(x)^(n^3) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*(A+x*O(x^n))^(m^3))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2011
STATUS
approved