login
A191238
Triangle T(n,k) = coefficient of x^n in expansion of (x+x^3+x^5)^k.
1
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 0, 0, 6, 0, 5, 0, 1, 0, 2, 0, 10, 0, 6, 0, 1, 0, 0, 7, 0, 15, 0, 7, 0, 1, 0, 1, 0, 16, 0, 21, 0, 8, 0, 1, 0, 0, 6, 0, 30, 0, 28, 0, 9, 0, 1, 0, 0, 0, 19, 0, 50, 0, 36, 0, 10, 0, 1, 0, 0, 3, 0, 45, 0, 77, 0, 45, 0, 11, 0, 1, 0, 0, 0, 16, 0, 90, 0, 112, 0, 55, 0, 12, 0, 1
OFFSET
1,8
COMMENTS
1. Riordan Array (1,x+x^3+x^5) without first column.
2. Riordan Array (1+x^2+x^4,x+x^3+x^5) numbering triangle (0,0).
3. For the g.f. 1/(1-x-x^3-x^5) we have a(n)=sum(k=1..n, T(n,k)) (see A060961).
4. For the e.g.f. exp(1-x-x^3-x^5) we have a(n)=n!*sum(k=1..n, T(n,k)/k!) (see A191237).
5. Bell Polynomial of second kind B(n,k){1,0,6,0,120,0,0,...,0}=n!/k!*T(n,k).
For more formulas see preprints.
LINKS
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 [math.CO], 2011.
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
T(n,k) = Sum_{j=0..k} binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1)/2.
EXAMPLE
Triangle begins:
1,
0,1,
1,0,1,
0,2,0,1,
1,0,3,0,1,
0,3,0,4,0,1,
0,0,6,0,5,0,1,
0,2,0,10,0,6,0,1,
0,0,7,0,15,0,7,0,1,
0,1,0,16,0,21,0,8,0,1
MAPLE
A191238 := proc(n, k)
add(binomial(j, ((n-k-2*j)/2))*binomial(k, j)*((-1)^(n-k)+1), j=0..k)/2 ;
end proc:
seq(seq(A191238(n, m), m=1..n), n=1..10) ; # R. J. Mathar, Dec 16 2015
PROG
(Maxima)
T(n, k):=sum(binomial(j, ((n-k-2*j)/2))*binomial(k, j)*((-1)^(n-k)+1), j, 0, k)/2;
CROSSREFS
Cf. A060961 (row sums).
Sequence in context: A234954 A321201 A180649 * A049310 A168561 A253190
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, May 27 2011
STATUS
approved