login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191238
Triangle T(n,k) = coefficient of x^n in expansion of (x+x^3+x^5)^k.
1
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 0, 0, 6, 0, 5, 0, 1, 0, 2, 0, 10, 0, 6, 0, 1, 0, 0, 7, 0, 15, 0, 7, 0, 1, 0, 1, 0, 16, 0, 21, 0, 8, 0, 1, 0, 0, 6, 0, 30, 0, 28, 0, 9, 0, 1, 0, 0, 0, 19, 0, 50, 0, 36, 0, 10, 0, 1, 0, 0, 3, 0, 45, 0, 77, 0, 45, 0, 11, 0, 1, 0, 0, 0, 16, 0, 90, 0, 112, 0, 55, 0, 12, 0, 1
OFFSET
1,8
COMMENTS
1. Riordan Array (1,x+x^3+x^5) without first column.
2. Riordan Array (1+x^2+x^4,x+x^3+x^5) numbering triangle (0,0).
3. For the g.f. 1/(1-x-x^3-x^5) we have a(n)=sum(k=1..n, T(n,k)) (see A060961).
4. For the e.g.f. exp(1-x-x^3-x^5) we have a(n)=n!*sum(k=1..n, T(n,k)/k!) (see A191237).
5. Bell Polynomial of second kind B(n,k){1,0,6,0,120,0,0,...,0}=n!/k!*T(n,k).
For more formulas see preprints.
LINKS
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 [math.CO], 2011.
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
T(n,k) = Sum_{j=0..k} binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1)/2.
EXAMPLE
Triangle begins:
1,
0,1,
1,0,1,
0,2,0,1,
1,0,3,0,1,
0,3,0,4,0,1,
0,0,6,0,5,0,1,
0,2,0,10,0,6,0,1,
0,0,7,0,15,0,7,0,1,
0,1,0,16,0,21,0,8,0,1
MAPLE
A191238 := proc(n, k)
add(binomial(j, ((n-k-2*j)/2))*binomial(k, j)*((-1)^(n-k)+1), j=0..k)/2 ;
end proc:
seq(seq(A191238(n, m), m=1..n), n=1..10) ; # R. J. Mathar, Dec 16 2015
PROG
(Maxima)
T(n, k):=sum(binomial(j, ((n-k-2*j)/2))*binomial(k, j)*((-1)^(n-k)+1), j, 0, k)/2;
CROSSREFS
Cf. A060961 (row sums).
Sequence in context: A321201 A180649 A373643 * A049310 A168561 A253190
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, May 27 2011
STATUS
approved