This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191239 Triangle T(n,k) = coefficient of x^n in expansion of (x+x^2+2*x^3)^k. 0
 1, 1, 1, 2, 2, 1, 0, 5, 3, 1, 0, 4, 9, 4, 1, 0, 4, 13, 14, 5, 1, 0, 0, 18, 28, 20, 6, 1, 0, 0, 12, 49, 50, 27, 7, 1, 0, 0, 8, 56, 105, 80, 35, 8, 1, 0, 0, 0, 56, 161, 195, 119, 44, 9, 1, 0, 0, 0, 32, 210, 366, 329, 168, 54, 10, 1, 0, 0, 0, 16, 200, 581, 721, 518, 228, 65, 11, 1, 0, 0, 0, 0, 160, 732, 1337, 1288, 774, 300, 77, 12, 1, 0, 0, 0, 0, 80, 780, 2045, 2716, 2142, 1110, 385, 90, 13, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS 1. Riordan Array (1,x+x^2+2*x^3) without first column. 2. Riordan Array (1+x+2*x^3,x+x^2+2*x^3) numbering triangle (0,0). 3. Bell Polynomial of second kind B(n,k){1,2,12,0,0,0,...,0}=n!/k!*T(n,k). 4. For the g.f. 1/(1-x-x^2-2*x^3) we have a(n)=sum(k=1..n, T(n,k)) (see A077947) For more formulas see preprints. LINKS Vladimir Kruchinin, Compositae and their properties, arXiv:1103.2582 Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 FORMULA T(n,k)=sum(j=0..k, binomial(j,n-3*k+2*j)*2^(k-j)*binomial(k,j)) EXAMPLE triangle begins: 1, 1,1, 2,2,1, 0,5,3,1, 0,4,9,4,1, 0,4,13,14,5,1, 0,0,18,28,20,6,1, PROG (Maxima) T(n, k):=sum(binomial(j, n-3*k+2*j)*2^(k-j)*binomial(k, j), j, 0, k); CROSSREFS Sequence in context: A198792 A196182 A107267 * A112161 A128497 A011434 Adjacent sequences:  A191236 A191237 A191238 * A191240 A191241 A191242 KEYWORD nonn,tabl AUTHOR Vladimir Kruchinin, May 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .