This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191237 E.g.f. exp(x+x^3+x^5) 2
 1, 1, 1, 7, 25, 181, 1201, 5251, 57457, 469225, 4340161, 50118751, 412902601, 5544552157, 69259632625, 816044592091, 12518563864801, 152563427413201, 2401979910598657, 39326158638385975, 575414895837696121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..125 FORMULA a(n)=n!*sum(k=1..n, ((-1)^(n-k)+1)*sum(binomial(j,(n-k)/2-j)*binomial(k,j),j,0,k)/(2*k!)), n>0, a(0)=1. MATHEMATICA a[n_] := n!*Sum[((-1)^(n - k) + 1)* Sum[ Binomial[j, (n - k)/2 - j]*Binomial[k, j], {j, 0, k}]/(2*k!), {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 21 2013 *) With[{nn=20}, CoefficientList[Series[Exp[x+x^3+x^5], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 21 2016 *) PROG (Maxima) a(n):=n!*sum(((-1)^(n-k)+1)*sum(binomial(j, (n-k)/2-j)*binomial(k, j), j, 0, k)/(2*k!), k, 1, n); (PARI) x='x+O('x^66); /* that many terms */ Vec(serlaplace(exp(x+x^3+x^5))) /* show terms */ /* Joerg Arndt, May 28 2011 */ CROSSREFS Sequence in context: A241714 A151491 A208425 * A088009 A208823 A197913 Adjacent sequences:  A191234 A191235 A191236 * A191238 A191239 A191240 KEYWORD nonn AUTHOR Vladimir Kruchinin, May 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.