login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191237 E.g.f. exp(x+x^3+x^5) 2
1, 1, 1, 7, 25, 181, 1201, 5251, 57457, 469225, 4340161, 50118751, 412902601, 5544552157, 69259632625, 816044592091, 12518563864801, 152563427413201, 2401979910598657, 39326158638385975, 575414895837696121 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..125

FORMULA

a(n)=n!*sum(k=1..n, ((-1)^(n-k)+1)*sum(binomial(j,(n-k)/2-j)*binomial(k,j),j,0,k)/(2*k!)), n>0, a(0)=1.

MATHEMATICA

a[n_] := n!*Sum[((-1)^(n - k) + 1)* Sum[ Binomial[j, (n - k)/2 - j]*Binomial[k, j], {j, 0, k}]/(2*k!), {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Feb 21 2013 *)

With[{nn=20}, CoefficientList[Series[Exp[x+x^3+x^5], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 21 2016 *)

PROG

(Maxima)

a(n):=n!*sum(((-1)^(n-k)+1)*sum(binomial(j, (n-k)/2-j)*binomial(k, j), j, 0, k)/(2*k!), k, 1, n);

(PARI) x='x+O('x^66); /* that many terms */

Vec(serlaplace(exp(x+x^3+x^5))) /* show terms */ /* Joerg Arndt, May 28 2011 */

CROSSREFS

Sequence in context: A241714 A151491 A208425 * A088009 A208823 A197913

Adjacent sequences:  A191234 A191235 A191236 * A191238 A191239 A191240

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, May 27 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 16:24 EST 2016. Contains 278745 sequences.