
COMMENTS

a(32) <= 9519378185.  Donovan Johnson, Apr 30 2011
From Antti Karttunen, Oct 02 2019: (Start)
For at least n = 1, 3, 4, 5, 6, 7, 10, 14, 15, 17, 21, 23, 24, 25, 26, 27, 28, 29, we have = a(n) = A003415(a(1+n)), thus we have subsequences like 6, 9, 14, 33, 62, 177 that are obtained by iterating A098699 starting from 6, but as A098699(177) = 0, that run ends there. From a(14) to a(16) we have a run of three such terms: 6849, 9770, 17675. A yet longer such run is from a(23) to a(30): 2029875, 4059746, 7037655, 17594075, 50850483, 68589598, 186888243, 373659254.
Applying A327968 to these terms yields: 0, 0, 1, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, ...
Question: Are there indefinitely long sequences of iterations of A003415 that end with steps ... > p > 1 > 0, with p=5? Are there such sequences for any other prime p? Can we construct a such sequence that is guaranteed to be infinite? See the subtree depicted in A327975 and conjecture #8 in Ufnarovski and Ahlander paper.
(End)
