login
A048103
Numbers not divisible by p^p for any prime p.
72
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98
OFFSET
1,2
COMMENTS
If a(n) = Product p_i^e_i then p_i > e_i for all i.
Complement of A100716; A129251(a(n)) = 0. - Reinhard Zumkeller, Apr 07 2007
Density is 0.72199023441955... = Product_{p>=2} (1 - p^-p) where p runs over the primes. [Charles R Greathouse IV, Jan 25 2012]
A027748(a(n),k) <= A124010(a(n),k), 1<=k<=A001221(a(n)). [Reinhard Zumkeller, Apr 28 2012]
LINKS
FORMULA
a(n) ~ kn with k = 1/Product_{p>=2}(1 - p^-p) = Product_{p>=2}(1 + 1/(p^p - 1)) = 1.3850602852..., where the product is over all primes p. [Charles R Greathouse IV, Jan 25 2012]
EXAMPLE
6 = 2^1 * 3^1 is OK but 12 = 2^2 * 3^1 is not.
625 = 5^4 is present because it is not divisible by 5^5.
MATHEMATICA
{1}~Join~Select[Range@ 120, Times @@ Boole@ Map[First@ # > Last@ # &, FactorInteger@ #] > 0 &] (* Michael De Vlieger, Aug 19 2016 *)
PROG
(Haskell)
a048103 n = a048103_list !! (n-1)
a048103_list = filter (\x -> and $
zipWith (>) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
-- Reinhard Zumkeller, Apr 28 2012
(Scheme, with Antti Karttunen's IntSeq-library)
(define A048103 (ZERO-POS 1 1 A129251))
;; Antti Karttunen, Aug 18 2016
(PARI) isok(n) = my(f=factor(n)); for (i=1, #f~, if (f[i, 1] <= f[i, 2], return(0))); return(1); \\ Michel Marcus, Nov 13 2020
(Python)
from itertools import count, islice
from sympy import factorint
def A048103_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:all(map(lambda d:d[1]<d[0], factorint(n).items())), count(max(startvalue, 1)))
A048103_list = list(islice(A048103_gen(), 30)) # Chai Wah Wu, Jan 05 2023
CROSSREFS
Complement: A100716.
Positions of 0's in A129251, positions of 1's in A327936 and A342007.
Cf. A048102, A048104, A054743, A054744, A359550 (characteristic function).
Cf. A276086 (a permutation of this sequence).
Cf. A276092 (a subsequence).
Cf. A051674 (p^p).
Differs from its subsequence A276078 for the first time at n=451 where a(451)=625, while that value is missing from A276078.
Sequence in context: A195291 A042968 A337037 * A276078 A193303 A285465
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Apr 22 2000
STATUS
approved