

A048103


Numbers not divisible by p^p for any prime p.


32



1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

If n = Product p_i^e_i then p_i > e_i for all i.
Complement of A100716; A129251(a(n)) = 0.  Reinhard Zumkeller, Apr 07 2007
Density is 0.72199023441955... = Product_{p>=2} (1  p^p) where p runs over the primes. [Charles R Greathouse IV, Jan 25 2012]
A027748(a(n),k) <= A124010(a(n),k), 1<=k<=A001221(a(n)). [_Reinhard Zumkeller, Apr 28 2012_]


LINKS

R. Zumkeller, Table of n, a(n) for n = 1..10000


FORMULA

a(n) ~ kn with k = 1/Product_{p>=2}(1  p^p) = Product_{p>=2}(1 + 1/(p^p  1)) = 1.3850602852..., where the product is over all primes p. [Charles R Greathouse IV, Jan 25 2012]


EXAMPLE

6 = 2^1 * 3^1 is OK but 12 = 2^2 * 3^1 is not.
625 = 5^4 is present because it is not divisible by 5^5.


MATHEMATICA

{1}~Join~Select[Range@ 120, Times @@ Boole@ Map[First@ # > Last@ # &, FactorInteger@ #] > 0 &] (* Michael De Vlieger, Aug 19 2016 *)


PROG

(Haskell)
a048103 n = a048103_list !! (n1)
a048103_list = filter (\x > and $
zipWith (>) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
 Reinhard Zumkeller, Apr 28 2012
(Scheme, with Antti Karttunen's IntSeqlibrary)
(define A048103 (ZEROPOS 1 1 A129251))
;; Antti Karttunen, Aug 18 2016


CROSSREFS

Complement: A100716.
Positions of zeros in A129251.
Cf. A048102, A048104, A054743, A054744.
Cf. A276086 (a permutation of this sequence).
Cf. A276092 (a subsequence).
Differs from its subsequence A276078 for the first time at n=451 where a(451)=625, while that value is missing from A276078.
Sequence in context: A059557 A195291 A042968 * A276078 A193303 A285465
Adjacent sequences: A048100 A048101 A048102 * A048104 A048105 A048106


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from James A. Sellers, Apr 22 2000


STATUS

approved



