OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).
FORMULA
a(n) = 2*a(n-4) - a(n-8) for n>7.
G.f.: x*(4+x+12*x^2+16*x^3+12*x^4+x^5+4*x^6)/(1-x^4)^2; a(n) = (n/8)*(32 -7*(1+(-1)^n)*(1-i^n)) where i=sqrt(-1). - Bruno Berselli, Mar 15 2011
From Paul Curtz, Mar 22 2011: (Start)
a(n) = a(n-4) + period 4: repeat [16, 16, 2, 16]. Note that a(n) = 4*n/(period 4: repeat [1, 1, 8, 1]), Hence 16's = A010855. (End)
a(n) = 16*n/(11+7*(I^(2*n)-I^(-n)-I^n)). - Wesley Ivan Hurt, Jul 05 2016
MAPLE
A187541:=n->16*n/(11+7*(I^(2*n)-I^(-n)-I^n)): seq(A187541(n), n=0..100); # Wesley Ivan Hurt, Jul 05 2016
MATHEMATICA
Table[16n/(11+7*(I^(2*n)-I^(-n)-I^n)), {n, 0, 80}] (* Wesley Ivan Hurt, Jul 05 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Mar 11 2011
EXTENSIONS
Edited by N. J. A. Sloane, Mar 15 2011
STATUS
approved