login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322970
Coefficient triangle of polynomials recursively defined by P(n,x) = (n+1)*(n+1)! + x*Sum_{k=1..n} k^2*n!/(n+1-k)!*P(n-k,x) with P(0,x) = 1.
0
1, 1, 4, 1, 12, 18, 1, 24, 120, 96, 1, 40, 420, 1200, 600, 1, 60, 1080, 6720, 12600, 4320, 1, 84, 2310, 25200, 105840, 141120, 35280, 1, 112, 4368, 73920, 554400, 1693440, 1693440, 322560, 1, 144, 7560, 183456, 2162160, 11975040, 27941760, 21772800, 3265920
OFFSET
0,3
LINKS
B. Heim, F. Luca, and M. Neuhauser, Recurrence relations for polynomials obtained by arithmetic functions, International Journal of Number Theory, Vol. 15, No. 06, pp. 1291-1303 (2019).
FORMULA
A(n,k) = (n+1)!*(n+1+k)!/((k+1)!*(2k+1)!*(n-k)!) (proved);
The rows correspond to the polynomials:
P(0,x) = 1;
P(1,x) = x + 4;
P(2,x) = x^2 + 12*x + 18;
P(3,x) = x^3 + 24*x^2 + 120*x + 96;
...
They satisfy the recurrence relation P(n+1,x) = (x+3*n+3)*P(n,x) + (n+1)*(x-3*n)*P(n-1,x) + (n+1)*n*(n-1)*P(n-2,x) with P(0,x) = 1, P(1,x) = (x+3)*P(0,x) + 1, P(2,x) = (x+6)*P(1,x) + 2*(x-3)*P(0,x) (proved).
EXAMPLE
1;
1, 4;
1, 12, 18;
1, 24, 120, 96;
1, 40, 420, 1200, 600;
1, 60, 1080, 6720, 12600, 4320;
1, 84, 2310, 25200, 105840, 141120, 35280;
1, 112, 4368, 73920, 554400, 1693440, 1693440, 322560;
1, 144, 7560, 183456, 2162160, 11975040, 27941760, 21772800, 3265920
MAPLE
for n from 0 to nn do for k from 0 to n do printf("%g, ", (n+1)!*binomial(2*n+1-k, 2*(n-k)+1)/(n-k+1)!); end do; printf("\n"); end do;
PROG
(PARI) tabl = (nn)->for(n=0, nn, for(k=0, n, print1((n+1)!*binomial(2*n+1-k, 2*(n-k)+1)/(n-k+1)!, ", "); ); print(); )
CROSSREFS
Cf. A089231 (polynomials satisfy a similar recurrence relation with k instead of k^2 and (n+1)! instead of (n+1)*(n+1)! (proved)), A001563 (right diagonal).
Sequence in context: A370129 A187541 A117413 * A157384 A173621 A274087
KEYWORD
easy,nonn,tabl
AUTHOR
Markus Neuhauser, Jan 01 2019
STATUS
approved