OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k)*A187535(k).
(n+2)*a(n+2) - (16*n^2 + 47*n + 34)*a(n+1) - 4*(2*n+3)^2*a(n) = 0.
a(n) ~ 2^(4*n - 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)). - Vaclav Kotesovec, Mar 30 2018
MAPLE
seq(A187538(n), n=0..10) ; # R. J. Mathar, Mar 21 2011
MATHEMATICA
Table[(-1)^n + Sum[(-1)^(n-k)Binomial[2k-1, k-1](2k)!/k!, {k, 1, n}], {n, 0, 20}]
PROG
(Maxima) makelist((-1)^n+sum((-1)^(n-k)*binomial(2*k-1, k-1)*(2*k)!/k!, k, 1, n), n, 0, 12);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 11 2011
STATUS
approved