login
A186999
G.f. satisfies: A(x) = Sum_{n>=0} x^n/(1 - x*A(x)^n)^n.
4
1, 1, 2, 5, 16, 60, 248, 1098, 5127, 24996, 126353, 658914, 3531891, 19406185, 109079066, 626240743, 3668020847, 21899151005, 133179027307, 824588095681, 5195945625141, 33311336524674, 217230789307751, 1440698723164953
OFFSET
0,3
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 60*x^5 + 248*x^6 +...
The g.f. satisfies:
A(x) = 1 + x/(1-x*A(x)) + x^2/(1-x*A(x)^2)^2 + x^3/(1-x*A(x)^3)^3 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m/(1-x*(A+x*O(x^n))^m)^m)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A059237 A369483 A104547 * A307771 A331826 A301306
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 01 2011
STATUS
approved