login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186996 G.f. satisfies: A(x) = 1 + x*A(x) + x^2*A(x)^4. 2
1, 1, 2, 6, 20, 72, 273, 1073, 4333, 17869, 74937, 318601, 1370113, 5949201, 26046727, 114857599, 509669295, 2274146599, 10197234215, 45925646367, 207656685443, 942302814363, 4289903653615, 19588180438263, 89685571667763 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare to a g.f. C(x) of Catalan numbers: C(x) = 1 + x*C(x) + x^2*C(x)^3.

LINKS

Robert Israel, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: A(x) = (1/x)*Series_Reversion( 2*x^3/(1 - sqrt(1-4*x^2-4*x^3)) ).

G.f. satisfies: A(x) = (1 + x*A(x)) * (1 + x*A(x)^3) / (1 + x*A(x)^2).

Recurrence: 3*(n-2)*n*(2*n-5)*(3*n-2)*(3*n+2)*a(n) = 3*(2*n-5)*(2*n-1)*(18*n^3 - 54*n^2 + 36*n - 5)*a(n-1) + (2*n-3)*(94*n^4 - 564*n^3 + 1222*n^2 - 1128*n + 331)*a(n-2) + 3*(2*n - 5)*(2*n - 1)*(18*n^3 - 108*n^2 + 198*n - 103)*a(n-3) - 3*(n-3)*(n-1)*(2*n-1)*(3*n-11)*(3*n-7)*a(n-4). - Vaclav Kotesovec, Sep 10 2013

a(n) ~ c*d^n/n^(3/2), where d = (9 + 8*sqrt(3) + 4*sqrt(12 + 9*sqrt(3)))/9 = 4.874032512954972962... is the root of the equation 27 - 108*d - 94*d^2 - 108*d^3 + 27*d^4 = 0 and c = sqrt(11/(8*(-44 + sqrt(748 + 891*sqrt(3)))*Pi)) = 0.336422381089368230542882135982348331566666028... - Vaclav Kotesovec, Sep 10 2013, updated Apr 27 2015

a(n) = sum(k=0..n, binomial(3n-2k+1, k)*binomial(k,n-k)*1/(3n-2k+1)). - Michael D. Weiner, Apr 23 2015

G.f.: A(x) = hypergeom([1/4, 1/2, 3/4], [2/3, 4/3], (256/27)*x^2/(x-1)^4)/(1-x). - Robert Israel, Apr 28 2015

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 72*x^5 + 273*x^6 +...

Related expansions:

A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 56*x^4 + 208*x^5 + 806*x^6 +...

A(x)^3 = 1 + 3*x + 9*x^2 + 31*x^3 + 114*x^4 + 438*x^5 + 1739*x^6 +...

A(x)^4 = 1 + 4*x + 14*x^2 + 52*x^3 + 201*x^4 + 800*x^5 + 3260*x^6 +...

MAPLE

S:= series(RootOf(y - 1 - x*y - x^2*y^4, y), x, 101):

seq(coeff(S, x, i), i=0..100); # Robert Israel, Apr 23 2015

MATHEMATICA

nmax=20; aa=ConstantArray[0, nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n, {n, 1, j-1}]+koef*x^j; sol=Solve[Coefficient[1 + x*AGF + x^2*AGF^4 - AGF, x, j]==0, koef][[1]]; aa[[j]]=koef/.sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] (* Vaclav Kotesovec, Sep 10 2013 *)

Table[Sum[Binomial[3n-2k+1, k]*Binomial[k, n-k]/(3n-2k+1), {k, 0, n}], {n, 0, 20}]  (* Vaclav Kotesovec, Apr 27 2015 after Michael D. Weiner *)

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A+x^2*(A+x*O(x^n))^4); polcoeff(A, n)}

(PARI) {a(n)=polcoeff((1/x)*serreverse(2*x^3/(1 - sqrt(1-4*x^2-4*x^3 +x^3*O(x^n)))), n)}

CROSSREFS

Cf. A182454.

Sequence in context: A049139 A071356 A141200 * A186576 A272485 A122737

Adjacent sequences:  A186993 A186994 A186995 * A186997 A186998 A186999

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)