login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104547 Number of Schroeder paths of length 2n having no UHD, UHHD, UHHHD, ..., where U=(1,1),D=(1,-1), H=(2,0). 2
1, 2, 5, 16, 60, 245, 1051, 4660, 21174, 98072, 461330, 2197997, 10585173, 51443379, 251982793, 1242734592, 6165798680, 30754144182, 154123971932, 775669589436, 3918703613376, 19866054609754, 101029857327802, 515275408644773 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318).

a(n)=A104546(n,0)

Equals binomial transform of A119370. - Paul D. Hanna, May 17 2006

LINKS

Table of n, a(n) for n=0..23.

FORMULA

G.f.=G=G(z) satisfies G=1+zG+zG[G-z/(1-z)].

G.f.: A(x) = (1-2*x+2*x^2 - sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)). - Paul D. Hanna, May 17 2006

EXAMPLE

a(2)=5 because we have HH, HUD, UDH, UDUD and UUDD (UHD does not qualify).

PROG

(PARI) {a(n)=polcoeff(2*(1-x)/(1-2*x+2*x^2 + sqrt(1-8*x+16*x^2-12*x^3+4*x^4+x*O(x^n))), n)} - Paul D. Hanna, May 17 2006

CROSSREFS

Cf. A006318, A104546.

Cf. A119370.

Sequence in context: A208988 A107283 A059237 * A186999 A307771 A301306

Adjacent sequences:  A104544 A104545 A104546 * A104548 A104549 A104550

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Mar 14 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 06:24 EDT 2019. Contains 323599 sequences. (Running on oeis4.)