login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186997 G.f. satisfies: A(x) = 1 + x*A(x)^3 + x^2*A(x)^4. 9
1, 1, 4, 19, 104, 614, 3816, 24595, 162896, 1101922, 7580904, 52878654, 373100272, 2658188524, 19096607120, 138182654595, 1006202473888, 7367648586954, 54214472633064, 400698865376842, 2973344993337520, 22142778865313364 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n-1) is the number of rows with the value false in the truth tables of all bracketed implications with n distinct variables. - Volkan Yildiz, Jul 01 2011

From Peter Bala, Aug 02 2016: (Start)

Conjectures (both checked up to n = 100):

2-adic valuation of a(2*n+1) = 2-adic valuation of Catalan(2*n+1) (= 2-adic valuation of Catalan(n));

2-adic valuation of a(2*n) = 3 + 2-adic valuation of Catalan(n-2) for n >= 2, where Catalan(n) = A000108(n). (End)

a(n) is the number of Dyck paths of semi-length n using only steps U_1 = (4,2), U_2 = (9,3) and D = (1,-1). - Michael D. Weiner, Jun 12 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..100

Daniel Birmajer, Juan B. Gil, Peter R. W. McNamara, Michael D. Weiner, Enumeration of colored Dyck paths via partial Bell polynomials, arXiv:1602.03550 [math.CO], 2016.

P. J. Cameron, V. Yildiz, Counting false entries in truth tables of bracketed formulas connected by implication. Also arXiv:1106.4443 [math.CO].

Volkan Yildiz, General combinatorical structure of truth tables of bracketed formulas connected by implication, arXiv preprint arXiv:1205.5595 [math.CO], 2012.

FORMULA

G.f.: A(x) = (1/x)*Series_Reversion(x*(1+sqrt(1-4*x-4*x^2))/2).

a(n) = sum(k=0..n, (binomial(k,n-k)*binomial(n+2*k,n+k))/(n+k+1). - Vladimir Kruchinin, May 12 2011

From Volkan Yildiz, Jul 03 2011: (Start)

Let f(n) = sum{i=1..n-1} (2^i*C(i-1)-f(i))*f(n-i), with f(0)=0, f(1)=1, and where C are the Catalan numbers A000108. Then a(n)=f(n+1).

A(x)= 1/x * (-1-sqrt(1-8*x)+sqrt(2+2*sqrt(1-8*x)+8*x))/4.

For large n, a(n) is asymptotically (3-sqrt(3))/3* 2^(3*n)/sqrt(Pi*n^3), corrected by Vaclav Kotesovec, May 31 2014. (End)

O.g.f. satisfies A(x^2) = 1/x * Series_Reversion( x*(1 - x^2)/(1 + x^4) ). - Peter Bala, Aug 02 2016

EXAMPLE

G.f.: A(x) = 1 + x + 4*x^2 + 19*x^3 + 104*x^4 + 614*x^5 + 3816*x^6 +...

MAPLE

A(x):= 1/x * (-1-sqrt(1-8*x)+sqrt(2+2*sqrt(1-8*x)+8*x))/4 ;

a:= n-> coeff(series(A(x), x, n+2), x, n):

seq(a(n), n=0..20); # Volkan Yildiz, Jul 01 2011

MATHEMATICA

CoefficientList[Series[1/x * (-1-Sqrt[1-8*x]+Sqrt[2+2*Sqrt[1-8*x]+8*x])/4, {x, 0, 20}], x] (* Vaclav Kotesovec, May 31 2014 *)

a[n_] := Sum[Binomial[k, n-k]*Binomial[n+2*k, n+k]/(n+k+1), {k, 1, n}]; Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Apr 02 2015, after Vladimir Kruchinin *)

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^3+x^2*(A+x*O(x^n))^4); polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n)=polcoeff((1/x)*serreverse(x*(1+sqrt(1-4*x-4*x^2 +x^2*O(x^n)))/2), n)}

for(n=0, 25, print1(a(n), ", "))

(Maxima) a(n):=sum((binomial(k, n-k)*binomial(n+2*k, n+k))/(n+k+1), k, 1, n); /* Vladimir Kruchinin, May 12 2011 */

(PARI) x='x+O('x^66); /* that many terms */

Vec(1/x*serreverse((x*(1+sqrt(1-4*x-4*x^2))/2))) /* show terms */ /* Joerg Arndt, May 13 2011 */

CROSSREFS

Cf. A000108.

Sequence in context: A276975 A178302 A292098 * A062265 A088129 A082030

Adjacent sequences:  A186994 A186995 A186996 * A186998 A186999 A187000

KEYWORD

nonn,easy

AUTHOR

Paul D. Hanna, Mar 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 09:41 EST 2019. Contains 329979 sequences. (Running on oeis4.)