login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182660 a(2^(k+1)) = k; 0 everywhere else. 1
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

A surjection N->N designed to spite a guesser who is trying to guess whether it's a surjection, using the following naive guessing method: Guess that (n0,...,nk) is a subsequence of a surjection iff it contains every natural less than log_2(k+1).

This sequence causes the would-be guesser to change his mind infinitely often.

a(0)=0. Assume a(0),...,a(n) have been defined.

If the above guesser guesses that (a(0),...,a(n)) IS the beginning of a surjective sequence, then let a(n+1)=0. Otherwise let a(n+1) be the least number not in (a(0),...,a(n)).

LINKS

Table of n, a(n) for n=0..100.

S. Alexander, On Guessing Whether A Sequence Has A Certain Property, preprint.

PROG

(MAGMA) [ exists(t){ k: k in [1..Ceiling(Log(n+1))] | n eq 2^(k+1) } select t else 0: n in [0..100] ];

CROSSREFS

Cf. A182661.

Sequence in context: A104261 A028702 A083929 * A122698 A002483 A060478

Adjacent sequences:  A182657 A182658 A182659 * A182661 A182662 A182663

KEYWORD

nonn

AUTHOR

Sam Alexander, Nov 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 21:20 EST 2016. Contains 278694 sequences.