This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182662 Number of ordered ways to write n = p + q with q > 0 such that p, 3*(p + prime(q)) - 1 and 3*(p + prime(q)) + 1 are all prime. 5
 0, 0, 1, 0, 1, 0, 1, 2, 1, 1, 1, 0, 3, 2, 1, 1, 4, 3, 1, 1, 3, 3, 2, 3, 3, 1, 2, 3, 4, 2, 1, 6, 4, 4, 1, 4, 2, 1, 5, 4, 2, 1, 2, 4, 2, 2, 3, 3, 3, 4, 2, 3, 3, 2, 3, 1, 5, 2, 3, 1, 5, 6, 4, 5, 3, 3, 1, 4, 3, 2, 3, 5, 3, 3, 7, 4, 3, 1, 4, 5, 4, 3, 2, 4, 2, 5, 5, 4, 2, 2, 6, 8, 2, 2, 4, 2, 6, 1, 3, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS Conjecture: a(n) > 0 if n is not a divisor of 12. Clearly, this implies the twin prime conjecture. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014 EXAMPLE a(11) = 1 since 11 = 7 + 4 with 7, 3*(7 + prime(4)) - 1 = 3*14 - 1 = 41 and 3*(7 + prime(4)) + 1 = 3*14 + 1 = 43 all prime. a(210) = 1 since 210 = 97 + 113 with 97, 3*(97 + prime(113)) - 1 = 3*(97 + 617) - 1 = 2141 and 3*(97 + prime(113)) + 1 = 3*(97 + 617) + 1 =  2143 all prime. MATHEMATICA p[n_, m_]:=PrimeQ[3(m+Prime[n-m])-1]&&PrimeQ[3(m+Prime[n-m])+1] a[n_]:=Sum[If[p[n, Prime[k]], 1, 0], {k, 1, PrimePi[n-1]}] Table[a[n], {n, 1, 100}] CROSSREFS Cf. A000040, A001359, A006512, A236531, A236831. Sequence in context: A089339 A249303 A319081 * A308778 A127284 A120691 Adjacent sequences:  A182659 A182660 A182661 * A182663 A182664 A182665 KEYWORD nonn AUTHOR Zhi-Wei Sun, Jan 31 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)