The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336931 Difference between the 2-adic valuation of A003973(n) [= the sum of divisors of the prime shifted n] and the 2-adic valuation of the number of divisors of n. 4
 0, 1, 0, 0, 2, 1, 1, 1, 0, 3, 0, 0, 0, 2, 2, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 1, 0, 1, 4, 3, 0, 1, 0, 2, 3, 0, 0, 3, 0, 3, 1, 2, 3, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 1, 2, 2, 2, 5, 0, 2, 1, 1, 1, 0, 2, 1, 2, 1, 0, 4, 0, 1, 3, 1, 0, 2, 1, 1, 1, 2, 0, 2, 0, 1, 3, 4, 4, 1, 0, 3, 1, 0, 0, 1, 4, 1, 0, 1, 0, 0, 2, 2, 1, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Note that A295664(n) = A295664(A003961(n)). LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA Additive with a(p^e) = 0 when e is even, a(p^e) = A007814(1+A003961(p))-1 when e is odd. a(n) = A336932(n) - A295664(n). a(n) = a(A007913(n)). PROG (PARI) A007814(n) = valuation(n, 2); A336931(n) = { my(f=factor(n)); sum(i=1, #f~, (f[i, 2]%2) * (A007814(1+nextprime(1+f[i, 1]))-1)); }; (PARI) A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; A007814(n) = valuation(n, 2); A336931(n) = (A007814(A003973(n)) - A007814(numdiv(n))); CROSSREFS Cf. A003961, A003973, A007814, A007913, A295664, A336930 (positions of zeros), A336932, A336937. Sequence in context: A089339 A249303 A319081 * A182662 A308778 A127284 Adjacent sequences:  A336928 A336929 A336930 * A336932 A336933 A336934 KEYWORD nonn AUTHOR Antti Karttunen, Aug 17 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 12:45 EDT 2021. Contains 343037 sequences. (Running on oeis4.)