login
A180404
Primes p such that the sum of fifth power of their digits is a prime.
1
11, 101, 191, 223, 227, 229, 281, 313, 331, 337, 359, 373, 379, 397, 463, 487, 557, 577, 593, 643, 683, 733, 739, 757, 773, 821, 863, 881, 911, 937, 953, 1019, 1033, 1091, 1109, 1123, 1129, 1181, 1213, 1231, 1259, 1277, 1291, 1303, 1321, 1381, 1433, 1439
OFFSET
1,1
FORMULA
If a prime p = abcdef... (each letter being a single digit) then sum = a^5+b^5+... belongs to this sequence if sum is a prime.
EXAMPLE
a(5) = 227 since 2^5+2^5+7^5 = 32+32+16807 = 16871 is a prime.
MATHEMATICA
Select[Prime[Range[500]], PrimeQ[Total[IntegerDigits[#]^5]]&] (* Harvey P. Dale, May 25 2011 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Carmine Suriano, Sep 02 2010
STATUS
approved