|
|
|
|
1, -1, -5, -3, -93, 95, -793, -211, -5853, 27003, -215955, 57459, -3518265, 3602027, 16811055, -4362627, -1846943453, 293601363, -14911085359, 4487888279, 144251733709, 245294787521, -1936010885087, 228009405371, -11179552565305, 63485965327535, -48562641580527
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Consider a lower triangular matrix T(n,k) defined by T(n,1)=A001790/A046161, k>1: T(n,k) = (sum from i = 1 to k-1 of T(n-i,k-1)) - (sum from i = 1 to k-1 of T(n-i,k)). The first column in the matrix inverse of T(n,k) will have the fraction A180403/A046161 in its first column.
The sequence considers the Moebius transform 1, -1/2, -5/8, -3/16, -93/128,.. of the sequence A001790(n-1)/A046161(n-1), i.e, assigning offset 1 to A001790 and A046161. - R. J. Mathar, Apr 22 2011
|
|
LINKS
|
Table of n, a(n) for n=1..27.
|
|
FORMULA
|
Lambert series: sum_{n >= 1} (A180403(n)/A046161(n))*x^n/(1-x^n) = x/sqrt(1-x). [From Mats Granvik, Sep 07 2010]
|
|
CROSSREFS
|
Cf. A001790, A046161 (denominators).
Sequence in context: A258091 A255599 A145985 * A267512 A230389 A048885
Adjacent sequences: A180400 A180401 A180402 * A180404 A180405 A180406
|
|
KEYWORD
|
frac,sign
|
|
AUTHOR
|
Mats Granvik, Sep 02 2010
|
|
EXTENSIONS
|
Signs of terms corrected by Mats Granvik, Sep 05 2010
Corrected and edited by Mats Granvik, Oct 08 2010
|
|
STATUS
|
approved
|
|
|
|