



1, 1, 5, 3, 93, 95, 793, 211, 5853, 27003, 215955, 57459, 3518265, 3602027, 16811055, 4362627, 1846943453, 293601363, 14911085359, 4487888279, 144251733709, 245294787521, 1936010885087, 228009405371, 11179552565305, 63485965327535, 48562641580527
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Consider a lower triangular matrix T(n,k) defined by T(n,1)=A001790/A046161, k>1: T(n,k) = (sum from i = 1 to k1 of T(ni,k1))  (sum from i = 1 to k1 of T(ni,k)). The first column in the matrix inverse of T(n,k) will have the fraction A180403/A046161 in its first column.
The sequence considers the Moebius transform 1, 1/2, 5/8, 3/16, 93/128,.. of the sequence A001790(n1)/A046161(n1), i.e, assigning offset 1 to A001790 and A046161.  R. J. Mathar, Apr 22 2011


LINKS

Table of n, a(n) for n=1..27.


FORMULA

Lambert series: sum_{n >= 1} (A180403(n)/A046161(n))*x^n/(1x^n) = x/sqrt(1x). [From Mats Granvik, Sep 07 2010]


CROSSREFS

Cf. A001790, A046161 (denominators).
Sequence in context: A258091 A255599 A145985 * A267512 A230389 A048885
Adjacent sequences: A180400 A180401 A180402 * A180404 A180405 A180406


KEYWORD

frac,sign


AUTHOR

Mats Granvik, Sep 02 2010


EXTENSIONS

Signs of terms corrected by Mats Granvik, Sep 05 2010
Corrected and edited by Mats Granvik, Oct 08 2010


STATUS

approved



