login
A180406
Primes p from sequence A180404 whose reverse is also a prime.
1
11, 101, 191, 313, 337, 359, 373, 733, 739, 757, 937, 953, 1033, 1091, 1109, 1181, 1213, 1231, 1259, 1321, 1381, 1439, 1583, 1811, 1831, 1901, 3121, 3163, 3299, 3301, 3343, 3433, 3613, 3851, 3929, 7057, 7187, 7507, 7817, 7949, 9011, 9293, 9341, 9479
OFFSET
1,1
COMMENTS
The reverse is obviously also in A180404 because the sum of the fifth powers of digits is not changed by digit reversal [R. J. Mathar, Nov 23 2010]
LINKS
FORMULA
A180404 INTERSECT A007500. [R. J. Mathar, Nov 23 2010]
EXAMPLE
a(5)=337 since 3^5+3^5+7^5=243+243+16807=17293 is still a prime and reverse(337)=733 is a prime, with same property.
MATHEMATICA
Select[Prime[Range[1200]], AllTrue[{IntegerReverse[#], Total[ IntegerDigits[ #]^5]}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 20 2017 *)
CROSSREFS
Sequence in context: A032592 A180404 A142317 * A174884 A121402 A156307
KEYWORD
nonn,base
AUTHOR
Carmine Suriano, Sep 02 2010
STATUS
approved