OFFSET
1,1
COMMENTS
Apparently, in most cases the sum of the digits of such primes is also prime, see A091365 for the exceptions.
I conjecture the contrary: the relative density of numbers in this sequence with prime digit sum is 0. - Charles R Greathouse IV, Sep 08 2010
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
EXAMPLE
a(1)=11 because 1^3 + 1^3 = 2 which is prime. a(10)=227 because 2^3 + 2^3 + 7^3 = 359 which is prime.
MATHEMATICA
Select[Prime[Range[2, 200]], PrimeQ[Total[IntegerDigits[#]^3]]&] (* Vincenzo Librandi, Apr 13 2013 *)
PROG
(PARI) is(n)=my(v); if(!isprime(n), return(0)); v=eval(Vec(Str(n))); isprime(sum(i=1, #v, v[i]^3)) \\ Charles R Greathouse IV, Sep 08 2010
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Chuck Seggelin (barkeep(AT)plastereddragon.com), Jan 03 2004
EXTENSIONS
a(44) = 997 inserted by Charles R Greathouse IV, Sep 08 2010
STATUS
approved