login
A091366
Primes p such that the sum of the cubes of the digits of p is prime.
10
11, 101, 113, 131, 139, 151, 193, 199, 223, 227, 241, 263, 269, 281, 283, 311, 337, 353, 359, 373, 421, 449, 461, 463, 487, 557, 577, 593, 599, 641, 643, 661, 733, 757, 821, 823, 827, 829, 883, 887, 919, 953, 991, 997, 1013, 1031, 1039, 1051, 1093, 1103, 1123
OFFSET
1,1
COMMENTS
Apparently, in most cases the sum of the digits of such primes is also prime, see A091365 for the exceptions.
I conjecture the contrary: the relative density of numbers in this sequence with prime digit sum is 0. - Charles R Greathouse IV, Sep 08 2010
LINKS
EXAMPLE
a(1)=11 because 1^3 + 1^3 = 2 which is prime. a(10)=227 because 2^3 + 2^3 + 7^3 = 359 which is prime.
MATHEMATICA
Select[Prime[Range[2, 200]], PrimeQ[Total[IntegerDigits[#]^3]]&] (* Vincenzo Librandi, Apr 13 2013 *)
PROG
(PARI) is(n)=my(v); if(!isprime(n), return(0)); v=eval(Vec(Str(n))); isprime(sum(i=1, #v, v[i]^3)) \\ Charles R Greathouse IV, Sep 08 2010
CROSSREFS
Cf. A046704 (primes whose digits sum to a prime) A052034 (primes whose digits squared sum to a prime) A091365 (primes whose digits cubed sum to a prime but whose digits do not sum to a prime).
Sequence in context: A117697 A305395 A158051 * A073064 A155075 A180421
KEYWORD
base,nonn
AUTHOR
Chuck Seggelin (barkeep(AT)plastereddragon.com), Jan 03 2004
EXTENSIONS
a(44) = 997 inserted by Charles R Greathouse IV, Sep 08 2010
STATUS
approved