login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178875
Partial sums of round(4^n/9).
1
0, 0, 2, 9, 37, 151, 606, 2426, 9708, 38835, 155343, 621377, 2485512, 9942052, 39768214, 159072861, 636291449, 2545165803, 10180663218, 40722652878, 162890611520, 651562446087, 2606249784355, 10424999137429, 41699996549724, 166799986198904
OFFSET
0,3
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((4*4^n - 3*n - 4)/27) = round((8*4^n - 6*n - 17)/54).
a(n) = floor((4*4^n - 3*n - 4)/27).
a(n) = ceiling((4*4^n - 3*n - 13)/27).
a(n) = a(n-3) + (7*4^(n-2) - 1)/3, n > 2.
a(n) = 5*a(n-1) - 4*a(n-2) + a(n-3) - 5*a(n-4) + 4*a(n-5), n > 4.
G.f.: (x^3-2*x^2)/((4*x-1)*(x^2+x+1)*(x-1)^2).
EXAMPLE
a(3)=0+0+2+7=9.
MAPLE
A178875 := proc(n) add( round(4^i/9), i=0..n) ; end proc:
MATHEMATICA
Accumulate[Round[4^Range[0, 30]/9]] (* Harvey P. Dale, Dec 16 2012 *)
PROG
(Magma) [Floor((4*4^n-3*n-4)/27): n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
CROSSREFS
Sequence in context: A373909 A206374 A037553 * A012493 A106851 A129169
KEYWORD
nonn,less
AUTHOR
Mircea Merca, Dec 28 2010
STATUS
approved