This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178873 Partial sums of round(5^n/7). 1
 0, 1, 5, 23, 112, 558, 2790, 13951, 69755, 348773, 1743862, 8719308, 43596540, 217982701, 1089913505, 5449567523, 27247837612, 136239188058, 681195940290, 3405979701451, 17029898507255, 85149492536273 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..160 Index to sequences with linear recurrences with constant coefficients, signature (7,-12,11,-5). Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. FORMULA a(n)=round((5*5^n+7)/28). a(n)=floor((5*5^n+19)/28). a(n)=ceil((5*5^n-5)/28). a(n)=a(n-6)+558*5^(n-5), n>5. a(n)=5*a(n-1)+a(n-6)-5*a(n-7), n>6. a(n)=7*a(n-1)-12*a(n-2)+11*a(n-3)-5*a(n-4), n>3. G.f.: -(2*x^2-x)/((x-1)*(5*x-1)*(x^2-x+1)). a(n) = 5^(n+1)/28 + 1/4 +A117373(n+2)/7 = (5*5^n+7)/28 - ((9-I*sqrt(3))*(1-I*sqrt(3))^n + (9+I*sqrt(3))*(1+I*sqrt(3))^n) / (42*2^n) where I is the imaginary unit. - Bruno Berselli, Jan 12 2011 EXAMPLE a(6)=0+1+4+18+89+446+2232=2790. MAPLE A178873 := proc(n) add( round(5^i/7), i=0..n) ; end proc: MATHEMATICA Accumulate[Round[5^Range[0, 25]/7]]  [From Harvey P. Dale, Feb. 1, 2011] PROG (MAGMA) [Floor((5*5^n+19)/28): n in [0..40]]; // Vincenzo Librandi, Apr 28 2011 CROSSREFS Sequence in context: A017974 A017975 A186652 * A199312 A113284 A104090 Adjacent sequences:  A178870 A178871 A178872 * A178874 A178875 A178876 KEYWORD nonn,less AUTHOR Mircea Merca, Dec 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .