The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178874 Partial sums of round(5^n/8). 1
 0, 1, 4, 20, 98, 489, 2442, 12208, 61036, 305177, 1525880, 7629396, 38146974, 190734865, 953674318, 4768371584, 23841857912, 119209289553, 596046447756, 2980232238772, 14901161193850, 74505805969241, 372529029846194 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..160 Index entries for linear recurrences with constant coefficients, signature (6,-4,-6,5). Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. FORMULA a(n) = round((5*5^n + 4*n - 1)/32) = round((5*5^n + 4*n - 5)/32). a(n) = floor((5*5^n + 4*n + 3)/32). a(n) = ceiling((5*5^n + 4*n - 5)/32). a(n) = a(n-2) + (3*5^(n-1) + 1)/4 , n > 1. a(n) = 6*a(n-1) - 4*a(n-2) - 6*a(n-3) + 5*a(n-4), n > 3. G.f.: (2*x^2-x)/((x+1)*(5*x-1)*(x-1)^2). a(n) = (5^(n+1) + 4*n - 4*(-1)^n - 1)/32. - Bruno Berselli, Jan 12 2011 EXAMPLE a(2) = 0 + 1 + 3 = 4. MAPLE A178874 := proc(n) add( round(5^i/8), i=0..n) ; end proc: MATHEMATICA Accumulate[Round[5^Range[0, 25]/8]]  (* Harvey P. Dale, Feb 18 2011 *) PROG (MAGMA) [Floor((5*5^n+4*n+3)/32): n in [0..40]]; // Vincenzo Librandi, Apr 28 2011 CROSSREFS Sequence in context: A293710 A098225 A073532 * A103771 A005054 A216099 Adjacent sequences:  A178871 A178872 A178873 * A178875 A178876 A178877 KEYWORD nonn,less AUTHOR Mircea Merca, Dec 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 12:15 EDT 2020. Contains 336439 sequences. (Running on oeis4.)