login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178449 Conjectured expansion of exp(Pi sqrt(163)) in powers of t, where t = 1/(640320)^3. 0
1, 744, -196884, 167975456, -180592706130, 217940004309743, -19517553165954887, 74085136650518742, -131326907606533204 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

COMMENTS

R. W. Gosper asks if the coefficients are well-defined. Until this is answered, the sequence is only conjectural. This series is very close to A178451, but presumably different from it.

REFERENCES

R. W. Gosper, Posting to the Math Fun Mailing List, Dec 21 2010

LINKS

Table of n, a(n) for n=-1..7.

Jim Cullen, An approximation of pi from Monster Group symmetries

EXAMPLE

e^(Pi sqrt(163)) = s^3 + 744 - 196884/s^3 + 167975456/s^6 - 180592706130/s^9 + 217940004309743/s^12 - 19517553165954887/s^15 + 74085136650518742/s^18 - ... where s = 640320. Now set t = 1/s^3.

PROG

/* GNU bc code, computes a(0) through a(7) */

define trunc(x) { auto sc, t; sc=scale; scale=0; t=x/1; scale=sc; return(t) }

scale = 200; pi = 4 * a(1); r = e(pi * sqrt(163)); s = 640320;

c0 =  1 + trunc(r - s^3);

c1 = -1 - trunc(((s^3 + c0) - r) * s^3);

c2 =  1 + trunc((r - (s^3 + c0 + c1/s^3)) * s^6);

c3 = -1 - trunc(((s^3 + c0 + c1/s^3 + c2/s^6) - r) * s^9);

c4 =  1 + trunc((r - (s^3 + c0 + c1/s^3 + c2/s^6 + c3/s^9)) * s^12);

c5 = -1 - trunc(((s^3 + c0 + c1/s^3 + c2/s^6 + c3/s^9 + c4/s^12) - r) * s^15);

c6 =  1 + trunc((r - (s^3 + c0 + c1/s^3 + c2/s^6 + c3/s^9 + c4/s^12 + c5/s^15)) * s^18);

c7 = -1 - trunc(((s^3 + c0 + c1/s^3 + c2/s^6 + c3/s^9 + c4/s^12 + c5/s^15 + c6/s^18) - r) * s^21);

CROSSREFS

Cf. A000521, A091406, A178451, A066396.

Sequence in context: A192731 A288261 A000521 * A178451 A066395 A161557

Adjacent sequences:  A178446 A178447 A178448 * A178450 A178451 A178452

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Dec 22 2010, based on a posting by R. W. Gosper to the Sequence Fans Mailing List, Dec 21 2010

EXTENSIONS

Cullen link, bc code, and a(8) from Robert Munafo, Dec 23 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 10:35 EDT 2017. Contains 292518 sequences.